
Exploring Coordination Models for
Ad Hoc Programming Teams

Sang Won Lee
Computer Science & Eng.
University of Michigan
snaglee@umich.edu

Sai R. Gouravajhala
Computer Science & Eng.
University of Michigan
sairohit@umich.edu

Yan Chen
School of Information
University of Michigan
yanchenm@umich.edu

Angela Chen
Computer Science & Eng.
University of Michigan
chenaj@umich.edu

Noah Klugman
Computer Science & Eng.
University of Michigan
nklugman@umich.edu

Walter S. Lasecki
Computer Science & Eng.
University of Michigan
wlasecki@umich.edu

Abstract
Software development is a complex task with inherently
interdependent sub-components. Prior work on crowd-
sourcing software engineering has addressed this prob-
lem by performing an a priori decomposition of the task
into well-defined microtasks that individual crowd workers
can complete independently. Alternatively, ad hoc teams of
experts recruited from online crowds can remotely collabo-
rate, avoiding the up-front cost to end users of task decom-
position. However, these temporary ad hoc teams can lead
to high coordination costs during the session itself. In this
paper, we explore the types and causes of these coordina-
tion costs for transient software teams in existing collabo-
rative programming tools: a version control system and a
real-time shared editor. Based on our findings, we suggest
design elements of shared programming environments that
help teams effectively self-coordinate on their task.

Author Keywords
Software development tools; Ad hoc teams; Crowdsourcing

ACM Classification Keywords
H.5.m [Information interfaces and presentation]: Misc.

Ad Hoc Crowd Programming Teams
Software development is a complicated process that fre-
quently requires a diverse range of skills and insights.
Crowdsourcing has the potential to make software pro-



duction more flexible, scalable, and efficient, but this is dif-
ficult due to the inherent interdependency between sub-
components in software code. As a result, coordination
costs grow significantly as team size increases [1]. In this
paper, we motivate an approach to coordinating ad hoc
teams in which workers can collaborate to write code re-
motely in real-time so that the team can complete more
complex and moderately defined tasks quickly.

Crowdsourcing recruits groups of workers through an open
call [24], and has been used to complete complex tasks [13,
16], and even continuous real-time tasks [15, 17]. Prior
work in crowdsourced software engineering has leveraged
the crowd using a number of different models [19]. For in-
stance, Topcoder leverages a community of programmers
using a competitive model where contributors participate in
programming contests [14]. Latoza et al. suggest a system-
atic approach to decomposing a complex programming task
into a set of microtasks that can be quickly solved by in-
dividual crowd-workers [18]. However, such approaches
add overhead, both at the initial stage when preparing
well-defined tasks, and later when results need to be in-
tegrated [23]. Ad hoc teams leave task decomposition and
delegation to workers themselves, but without structured
coordination or workflow design, can be inefficient [20].

Additionally, online programming assistance services that
simulate remote pair-programming (synchronous) [10, 12]
and services that provide programming assistance inte-
grated into version control systems or workplace collabora-
tive platforms (asynchronous) [4] have launched in the last
few years. Codeon realizes asynchronous crowd-assisted
programming through an on-demand support model, im-
proving developer productivity by 70% over state-of-the-art
tools [2, 3]. As these platforms mature, it is important that
we explore rich and efficient ways to interact with crowds

of programmers. Our work anticipates new assistance plat-
forms that take advantage of the scalability of crowds while
maintaining the benefits of tailored support.

This paper targets cases that developers need to hand off
part of a software development task to a temporarily formed
ad hoc programming team for a relatively short time span
(e.g., hours, days), which will help the developer parallelize
their efforts without hiring another developer long term. In
this paper, we first study the issues that arise when multiple
crowd workers are asked to work in an ad hoc team. We
then propose a real-time shared programming environment
that helps workers self-organize their collaboration.

Coordination Costs in Ad Hoc Teams
Modern programming environments support collaborative
programming in various ways. Version control systems,
such as git, are widely used in collaborative programming
as programmers can work in distributed manner and syn-
chronize easily with the main code repository. In this case,
resolving merge conflicts requires additional effort and com-
munication, often making programmers move away from
collaborative programming projects, especially given the
short time-span that we focus on here. Collabode [7] intro-
duced a system that addressed the issue of breaking the
collaborative build without introducing the latency and over-
head of explicit version control. We conduct an experiment
to further understand the coordination issues and costs that
arise when groups of programmers are asked to complete a
programming task without clear individual sub-goals.

At the software level, real-time shared environments [9, 21]
can help mitigate much of the coordination costs between
workers because: 1) the system only maintains one mas-
ter copy, so individuals need not worry about code integra-
tion, and 2) the most up-to-date code is visible to everyone,



meaning that workers can prevent potential conflicts and
redundancies more easily before they propagate. Web-
based IDE tools, such as Koding [22] and Cloud9 [11], en-
able users to code collaboratively in real-time. However, the
needs of coordinating task decomposition and delegation
are left up to users. Furthermore, allowing simultaneous ac-
cess to a shared resource can cause new problems, such
as corrupting someone else code. While these challenges
can be addressed with in-person communication and orga-
nizational efforts (roles, responsibilities, team structures)
in traditional software development teams, the inherently
temporary nature of crowd teams necessitates additional
tools and methods for self-coordination. To identify chal-
lenges in coordinating ad hoc teams, we conduct a user
study in two widely used types of tools: version control sys-
tems (VCSs) and a shared editors, each accompanied by a
call/chat (Skype).

Identifying the needs of self-coordination
User Study: Ad Hoc Programming Teams
We conducted a usability study simulating a scenario in
which an end user developer hires crowd workers to form
a small ad hoc team (2-3 people) and to complete a short
programming task in an hour. The study had three con-
ditions: C1, individual programming (1 programmer); C2,
programming in group on a shared-code editor (2-3 pro-
grammers); and C3, programming in group with support of
a version control system (VCS). All participants used an
IDE (atom.io), and the participants in (C2) used a plug-in
(atom-pair, https://atom.io/packages/atom-pair) that synchro-
nizes code text, while the participants in (C3) used a ver-
sion control system (git) in addition to the editor. Two col-
laborative groups (C2, C3) were also connected through
Skype.

We recruited 12 participants (from authors’ university (7)

and UpWork (5)) and conducted two sessions per condition
(E1-E6; refer to Table 1). Every participant had more than a
year of web programming experience, and are either a free-
lancer or a senior undergraduate student. Each participant
was asked if they were familiar with the programming con-
cepts necessary to solve the task (regex, event handlers,
and selectors). Participants were asked to complete a task
in a group of two or three or independently (max time: 60
minutes). The task was to create a simple web application
that takes a text content and evaluate the readability of the
content by calculating various statistics (word count, letter
count, five extra readability index). The task can be decom-
posed into a set of subtasks easily and they are dependent
on one another or share common functionalities.

Participants in a group did not know each other and were
asked to work on the task collaboratively with no guidance
as to how to collaborate beyond using the designated tools.
All participants were connected to the experimental session
through the conference call and were asked to record their
screen. In the end, each participant was asked to fill out a
survey that has a set of open-ended questions about the
collaborative programming experience. Code results sub-
mitted by the teams were evaluated based on how many
test cases the program satisfied, as well as the authors’
assessment of the code quality. After the experimental ses-
sions, we analyzed the screen and voice recording to iden-
tify all of the communications between programmers. We
also analyzed the effort spent coordinating the team’s ef-
forts in two different environments during the session.

Result: Shared-code Editor vs. Version Control System
It is worth noting that we did not attempt to confirm if one
of the conditions outperforms any other. Rather, we ob-
served how they collaborate, identified incidents where
programmers coordinated their efforts, and collected par-

https://atom.io/packages/atom-pair


Condition individual(C1) shared editor(C2) version control system(C3)

Experiment E1 E2 E3 E4 E5 E6

Number of Participants 1 (W) 1 (W) 2(S,S) 3(S,S,W) 2(W,W) 3(S,S,S)

Time Taken (in min) 60 60 60 58 60 60

Evaluation (max 100) 80 55 69 75 73 71.5

Table 1: We ran six experiments (E1-E6) with different conditions. For condition 2(C2),
participants used a shared editor and for condition 3(C3), participants used a version control
system (git). W indicates a crowd worker and S indicates a university student.

ticipant feedback from the survey. We observed two col-
laborative conditions that necessitated coordination effort
from the team. For the version control system condition
(C3) in which code text was not shared in real time, two
groups took opposite approaches tool their collaboration.
The first team (E5), composed of two crowd workers, split
the work initially, wrote code in parallel, and merged individ-
ual code at the end. There was minimal interaction between
the two programmers: it was limited to task distribution
in the beginning and for code integration at the end. The
consequence of two programmers working in parallel was
JavaScript code in two different styles, i.e., one used regu-
lar expressions with jQuery, while the other used character-
by-character comparison using arrays in pure JavaScript.
While this did not hurt the correctness of the code, the style
of the code in a file was not consistent which may lead to
higher maintenance cost in the future.

On the other hand, the second team (E6) chose to com-
municate actively from the beginning and discussed how
they could avoid merge conflicts when pushing code to
the repository. They chose to create a JavaScript file per
subtask, which complicated the coordination process
and added the significant overhead of time (40% of total
time).The first team (E5) spent 21% of the allotted time
splitting the work into two subtasks, updating/merging their
code with others, and testing the merged one. During merg-

ing the code, only one of two programmers was working in
testing and validating the code. Similarly, team (E6) also
had moments where a programmer asked others to wait
and not to commit any code until they pushed the code.
While two VCS groups chose different strategies for collab-
oration, we found they ran into the common bottleneck: task
completion was deferred by configuring collaboration in the
beginning and merging code at the end. The time it takes
to coordinate collaboration in version control systems would
have been significantly less if they were using the shared
code editor.

For real-time code sharing condition(C2), we observed that
maintaining single global “live” copy of code facilitated col-
laboration; this allowed participants to have access to more
information, which results in more consistent code and
initiates communication. They expressed the benefits of
reading someone else’s code in real time; (E4-2) wrote that
they “ avoided looking into online docs for some details”
and (E4-1) noted that “the other programmers thought of
a code organization that I didn’t think of.”). On the other
hand, some people expressed that they felt “distracted”
(E3-1,2) as they cannot test their code due to the incom-
plete code of others. This problem of being corrupted by
code-in-progress in a shared editor has been addressed
in [7]. However, the style of the code from (C2) was evalu-
ated to be stylistically more consistent and readable than
the ones from the (C3) group, leading to less cost for later
integration and maintenance [6]. In general, we see that the
advantages of using a real-time shared editor outweighed
the technical difficulties in its performance and testing. Also,
both groups in (C2) spent time in coordinating task decom-
position, which potentially explains why the durations taken
in the collaborative sessions are similar to the ones in the
solo session (C1).



Result: Needs for Communication and Awareness
We discovered that the level of communication could be
drastically different per group. The lack of communication
can be attributed to technical issues as well as social norms
(language barriers and lack of familiarity with strangers’
coding styles). For example, it took 12 minutes in a ses-
sion (E5) to split the task into two parts and the participants
never communicated to each other except when merging
code into the repository towards the end, resulting in the in-
consistent style of the code. We found from the videos that
the groups who did not communicate actively faced further
issues (e.g., wasted time on redundant tasks or inconsis-
tent code). One participant (E4-3) commented that "it would
be much more efficient if we knew each other due to bet-
ter communication," and (E5-1) responded that the task
"should have been reviewed and discussed in depth be-
forehand to determine the dependency of tasks." While the
level of communication can vary depending on the different
factors, the potential lack of communication necessitates
nuggets of information that will help initiate and facilitate
communication among programmers.

Further, participants expressed the needs of awareness
in the task distribution and its progress. Participant (E4-2)
commented that “what was difficult is to understand who
does what at this moment.” and (E5-2) wrote that they
would like "a system that would monitor tasks that the pro-
grammer is busy with and distribute this information to the
other users.". Various features to support simple awareness
are used in shared environments [5, 8], and typically high-
light edits (or cursors), which files are active, and users’
connection status [21]. While such awareness features
are useful for determining the spatial location of cursors, or
which file is being edited, they are not sufficient to provide
high-level information on the task distribution and overall
progress. Simple awareness features could also mislead

collaborators – e.g., the location of an inactive cursor while
a programmer searched for online materials made one par-
ticipant confused that it was “difficult to determine if any-
body is editing some functions in real time and decide if I
can edit it” (E4-2).

Finally, we found that early assignment of multiple subtasks
to individuals can lead to a potential bottleneck that makes
part of the group wait on a programmer to complete their
subtasks. In two collaborative sessions (E4, E6), we ob-
served that participants realized (as they wrote code) the
dependencies among their subtasks, and then determined
that they needed to change their assignments on-the-fly
or wait for others to finish certain subtasks. The potential
workaround to this problem is to assign only one task at a
time so that the interdependency of sub-components that
emerge later can be easily handled.

A Shared Code Editor for Ad-Hoc Teams
Based on the initial insights from the analysis of our exper-
iments and survey results, we find that the following design
elements would help reduce the coordination costs in a col-
laborative programming environment for ad hoc teams:

• a shared-code editor that avoids multiple versions
• displaying information on coordination that facilitates

communication among team members
• self-coordination tools for programmers to flexibly

complete tasks and provide progress awareness

To address these issues in communication and coordina-
tion, we are currently developing a shared code editor that
facilitates self-coordination and communication (Figure 1).
We introduce a subtask view that will help programmers
self-organize their work below in addition to basic func-
tionality like code synchronization, log in/out functionality,
a chat interface for real-time communication, and an inte-
grated run-time environment.



Figure 1: a shared editor with subtask view. 1) log in 2) a shared editor with region boundaries 3)
subtask-view 4) input data form 5) console output 6) chat interface 7) run button

Subtasks as a Communication Channel
The subtask-view (Figure 1-3) enumerates the list of sub-
tasks that are created by programmers. Programmers can
define a subtask and associate a region in the code editor
with the subtask before writing any code. Therefore, one
should declare what the subtask will be about first, before
writing code. Information about subtasks, such as the title
and description, are shared in real-time as they are entered.
This real-time information serves as means of declaring
the sub-components of the code and indicating how the
overall task is decomposed into a set of subtasks up to the
moment. While we apply this method to one file and the
unit of subtask is a region, note that the unit can be big-
ger depending on the scale of a project, programming lan-

guages being used, and its programming environment.This
can help programmers understand what subtasks are de-
fined and coordinate their roles in the session by reviewing
existing tasks and creating new ones. In addition, forcing
programmers to enter a title and description also helps doc-
ument the code. Creating subtasks is the primary way to
decompose tasks, and anyone can take that initiative.

Task Distribution by Locking Subtasks
In addition to the subtask view being a declarative and com-
municative medium for crowd workers, locking mechanisms
of subtasks help programmers be aware of the task dis-
tribution status. To be able to write code in a region of the
code editor, a programmer needs to lock a subtask that is
associated with the region. The locking mechanism is de-
signed to be exclusive so that one can only lock one sub-
task (and thus one region) at a time. Three states of a sub-
task (locked - blue, available - green, or in-creation -
red) represent what tasks are available to prevent potential
conflict. Since creating a subtask is separate from locking
the task, task distribution will be delayed until the moment a
programmer locks the task. Assigning subtasks is done by
individuals, making the process of writing code a part of the
system’s self-coordination mechanism.

Conclusion
We have presented initial results from a user study of ad
hoc team programming to understand coordination costs in
collaborative programming environments for crowd workers,
and proposed a collaborative programming environment
that facilitates self-coordination and communication. A set
of interesting challenges remain as a future work: e.g., re-
cruiting expert crowd workers, run-time environments for
the shared editor, and code refactoring across regions.



REFERENCES
1. Frederick P Brooks. 1975. The mythical man-month.

Vol. 1995. Addison-Wesley Reading, MA.

2. Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang,
Walter S Lasecki, and Steve Oney. 2017. Codeon:
On-Demand Software Development Assistance. In
Proceedings of the 2017 SIGCHI Conference on
Human Factors in Computing Systems. ACM.

3. Yan Chen, Steve Oney, and Walter S Lasecki. 2016.
Towards Providing On-Demand Expert Support for
Software Developers. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
ACM, 3192–3203.

4. Crowdbotics. 2014. (2014). https://crowdbotics.com/
Accessed: January, 2017.

5. Paul Dourish and Victoria Bellotti. 1992. Awareness
and coordination in shared workspaces. In Proceedings
of the 1992 ACM conference on Computer-supported
cooperative work. ACM, 107–114.

6. Robert L Glass. 2002. Facts and fallacies of software
engineering. Addison-Wesley Professional.

7. Max Goldman, Greg Little, and Robert C Miller. 2011.
Real-time collaborative coding in a web IDE. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology. ACM,
155–164.

8. Carl Gutwin and Saul Greenberg. 2002. A descriptive
framework of workspace awareness for real-time
groupware. Computer Supported Cooperative Work
(CSCW) 11, 3-4 (2002), 411–446.

9. Chih-Wei Ho, Somik Raha, Edward Gehringer, and
Laurie Williams. 2004. Sangam: a distributed pair
programming plug-in for Eclipse. In Proceedings of the

2004 OOPSLA workshop on eclipse technology
eXchange. ACM, 73–77.

10. Codementor Inc. 2014. Code Mentor,
https://codementor.io/. (2014).
https://codementor.io/ Accessed: April, 2016.

11. Cloud9 IDE Inc. 2010. Cloud9 IDE, https://c9.io. (2010).
https://c9.io Accessed: April, 2016.

12. HackHands Inc. 2015. Hack.hands(),
https://hackhands.com/. (2015).
https://hackhands.com/ Accessed: April, 2016.

13. Aniket Kittur, Boris Smus, Susheel Khamkar, and
Robert E Kraut. 2011. Crowdforge: Crowdsourcing
complex work. In Proceedings of the 24th annual ACM
symposium on User interface software and technology.
ACM, 43–52.

14. Karim R Lakhani, David A Garvin, and Eric Lonstein.
2010. Topcoder (a): Developing software through
crowdsourcing. (2010).

15. Walter S Lasecki, Christopher Homan, and Jeffrey P
Bigham. 2014. Architecting real-time crowd-powered
systems. Human Computation 1, 1 (2014).

16. Walter S Lasecki, Juho Kim, Nicholas Rafter, Onkur
Sen, Jeffrey P Bigham, and Michael S Bernstein. 2015.
Apparition: Crowdsourced User Interfaces That Come
To Life As You Sketch Them. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems. ACM, 1925–1934.

17. Walter S Lasecki, Kyle I Murray, Samuel White,
Robert C Miller, and Jeffrey P Bigham. 2011.
Real-Time Crowd Control of Existing Interfaces. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology. ACM, 23–32.

https://crowdbotics.com/
https://codementor.io/
https://c9.io
https://hackhands.com/


18. Thomas D LaToza, W Ben Towne, Christian M Adriano,
and André van der Hoek. 2014. Microtask
programming: Building software with a crowd. In
Proceedings of the 27th annual ACM symposium on
User interface software and technology. ACM, 43–54.

19. Thomas D LaToza and Andre van der Hoek. 2016.
Crowdsourcing in Software Engineering: Models,
Motivations, and Challenges. Software, IEEE 33, 1
(2016), 74–80.

20. Daniela Retelny, Sébastien Robaszkiewicz, Alexandra
To, Walter S Lasecki, Jay Patel, Negar Rahmati, Tulsee
Doshi, Melissa Valentine, and Michael S Bernstein.
2014. Expert crowdsourcing with flash teams. In
Proceedings of the 27th annual ACM symposium on
User interface software and technology. ACM, 75–85.

21. Stephan Salinger, Christopher Oezbek, Karl Beecher,
and Julia Schenk. 2010. Saros: an eclipse plug-in for
distributed party programming. In Proceedings of the
2010 ICSE Workshop on Cooperative and Human
Aspects of Software Engineering. ACM, 48–55.

22. Devrim Yasar Sinan Yasar. 2012. Koding. (2012).
https://koding.com Accessed: April, 2016.

23. Klaas-Jan Stol and Brian Fitzgerald. 2014. Two’s
company, three’s a crowd: a case study of
crowdsourcing software development. In Proceedings
of the 36th International Conference on Software
Engineering. ACM, 187–198.

24. James Surowiecki. 2005. The wisdom of crowds.
Anchor.

https://koding.com

	Ad Hoc Crowd Programming Teams
	Coordination Costs in Ad Hoc Teams
	Identifying the needs of self-coordination
	User Study: Ad Hoc Programming Teams
	Result: Shared-code Editor vs. Version Control System
	Result: Needs for Communication and Awareness

	A Shared Code Editor for Ad-Hoc Teams
	Subtasks as a Communication Channel
	Task Distribution by Locking Subtasks

	Conclusion
	REFERENCES 

