
SketchExpress: Remixing Animations for More Effective
Crowd-Powered Prototyping of Interactive Interfaces

Sang Won Lee, Yujin Zhang, Isabelle Wong, Yiwei Yang,
Stephanie D. O’Keefe, Walter S. Lasecki

Computer Science & Engineering | University of Michigan
{snaglee,yujinz,iswong,yanyiwei,sdokeefe,wlasecki}@umich.edu

ABSTRACT
Low-fidelity prototyping at the early stages of user interface
(UI) design can help designers and system builders quickly
explore their ideas. However, interactive behaviors in such
prototypes are often replaced by textual descriptions because
it usually takes even professionals hours or days to create ani-
mated interactive elements due to the complexity of creating
them. In this paper, we introduce SketchExpress, a crowd-
powered prototyping tool that enables crowd workers to create
reusable interactive behaviors easily and accurately. With
the system, a requester—designers or end-users—describes
aloud how an interface should behave and crowd workers
make the sketched prototype interactive within minutes using
a demonstrate-remix-replay approach. These behaviors are
manually demonstrated, refined using remix functions, and
then can be replayed later. The recorded behaviors persist for
future reuse to help users communicate with the animated pro-
totype. We conducted a study with crowd workers recruited
from Mechanical Turk, which demonstrated that workers could
create animations using SketchExpress in 2.9 minutes on aver-
age with 27% gain in the quality of animations compared to
the baseline condition of manual demonstration.

ACM Classification Keywords
D.2.2. Design Tools and Techniques: User Interface; H.5.m.
Information Interfaces and Presentation (e.g. HCI): Misc.
Author Keywords
Rapid prototyping; Animation; Real-Time Crowdsourcing;
Human Computation; Interactive interfaces;

INTRODUCTION
Prototyping graphical user interfaces (GUIs) allows designers
to clearly envision the effect that their design decisions will
have in practice and enables rapid, informed iteration. Design-
ing interactive behaviors often involves creating low-fidelity
prototypes that can actually be used as opposed to a static
drawings, which are not interactive.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST 2017, October 22–25, 2017, Quebec City, QC, Canada.
Copyright © 2017 Association of Computing Machinery.
ACM ISBN 978-1-4503-4981-9/17/10 ...$15.00.
https://doi.org/10.1145/3126594.3126595

However, creating interactive behaviors in early stage proto-
types is challenging for multiple reasons. First, interactive
behaviors involve the dynamic transformation of multiple in-
terface elements, which indicates that they cannot be easily
presented in static images. For example, to demonstrate how
a user can “swipe to unlock” a smartphone screen, a static
sketch is not enough. It requires a description of cause and
effect behaviors, e.g. what happens to the button with the
arrow moving within the rail when it reaches the right end,
what happens when a user releases the button halfway.

Second, existing tools typically provide a set of predetermined
behaviors that one can choose from. These preset behaviors
tend to only support specific types of applications (e.g., transi-
tions between web pages, or drop-down widgets) well. As a
result, these tools are limited to prototype behaviors in general
systems that go beyond traditional window-based GUIs. For
example, animating the behaviors of a video game character
in a side-scrolling game (e.g., Super Mario) or how the enemy
characters (e.g., turtles in Super Mario) respond to the other
element’s changes (e.g., Mario bouncing on them) cannot be
accomplished easily with existing tools. Existing tools that
can support expressive interactive behaviors require expertise –
and even then, creating high-fidelity prototypes can take hours
or days even for professional designers, which makes them
inappropriate for use in the earliest stages of UI design. In-
teractive prototyping requires first learning these professional
tools, making it difficult for non-experts (i.e. UI end users) to
participate in the UI design process.

In this paper, we build upon Apparition [17], a system that
leverages the online crowd to create interactive behaviors for
the designer. Apparition is a crowd-powered prototyping tool
in which a requester describes a GUI aloud and through sketch
while crowd workers connected to a shared canvas update and
refine the prototype. In Apparition, crowd workers can demon-
strate behaviors by manually animating objects whenever a
requester interacted with the sketch. However, the complex-
ity of behaviors that crowd workers could demonstrate was
limited. In addition, the manually demonstrated behaviors are
ephemeral and do not persist with the sketch once the sketch-
ing session is over. While we believe this model of real-time
collaboration between a requester and crowd is powerful—
as it allows end users to quickly and naturally create GUI
prototypes—it necessitates an effective way for non-expert
crowd workers to create interactive UI behaviors on the fly.

https://doi.org/10.1145/3126594.3126595
mailto:permissions@acm.org
http:totype.We
mailto:snaglee,yujinz,iswong,yanyiwei,sdokeefe,wlasecki}@umich.edu

Figure 1. SketchExpress allows crowd workers to prototype interactive behaviors. A requester describes aloud how a user interface should behave and
crowd workers quickly create complex interactive behaviors. The interface contains the following features for crowd workers to easily create interactive
behaviors (animations) as follows: (1) A synchronized canvas that supports simultaneous interactions between a requester and workers. (2) the ability
to select and replay multiple animations at once; (3) reset functionality that places elements in the animation back to their initial state (position, color,
etc.); (4) recording button to record a worker’s demonstrations; (5) a chat box for helpers to ask clarification questions if needed. (6) labels that show
the current state of the animation [replaying/remixing] to prevent multiple workers from concurrently working on the same animation.

This paper build upon this crowd-powered prototyping model
by providing techniques for crowd workers to easily and ac-
curately create interactive behaviors with a rich range of ex-
pression. To do this, we introduce SketchExpress, a tool that
is accessible to non-expert designers, that allows crowd work-
ers to create higher fidelity, reusable animations within a few
minutes in order to power interactive prototypes.

SketchExpress is built on top of Apparition, and the envi-
sioned interaction between the requester and the workers is
drawn from that system [17]. In SketchExpress, designers—
requesters in this crowdsourcing context—verbally describe
their prototype and one or more crowd workers collectively
produce a corresponding sketch. A requester can draw content
and then describe aloud desired behaviors without having to
stop to implement/create the functionality they are describ-
ing. Behind the scenes, non-expert crowd workers listen to
the verbal requests and use SketchExpress’s UI to create re-
playable animations in a matter of minutes. Designers can
also mock-up interactive behaviors using SketchExpress with-
out the crowd, but crowdsourcing allow the system to make
the creation process fluid and quick, which in turn makes
requesters’ interaction with the system minimal and natural.

We introduce an effective way for crowd workers to create
interactive behaviors quickly and accurately in response to de-
signers’ requests. SketchExpress does this by introducing the
demonstrate-remix-replay method, which is easy to learn and
expressive enough to prototype complex behaviors. Based on
the requester’s verbal description, crowd workers first demon-
strate a behavior that is recorded by the system as a series of
operations. Workers can then remix the recorded animation

to further refine it. Once this is done, any worker or designer
can replay and compose multiple animations with a click of
a button, making it possible to effectively support complex
(multi-part) animations in early-stage prototypes. The result-
ing prototype retains complex behaviors and can be used to
iteratively explore design ideas, communicate with collabora-
tors, and act as a “living spec” for future implementation.

We make the following contributions in this paper:
• a novel method, demonstrate-remix-replay, with which non-

expert crowds can prototype interactive GUI behaviors;
• SketchExpress, a system that creates reusable, higher-

fidelity animations in early sketch;
• validation of our approach through a user study with crowd

workers recruited from Mechanical Turk.

The results in this paper contribute to the broader goal of creat-
ing a prototyping tool that helps anyone design and/or modify
GUIs. We aim to support a broad population: designers to
rapidly iterate on ideas and hand-off tasks to crowd workers:
non-experts to participate in the design and improvement of
software systems; researchers to quickly mock up interactive
tools for experimentation; and students to create engaging ex-
amples even before they learn to program. Within the scope of
this paper, we focus specifically on techniques crowd workers
can use to create interactive behaviors in prototypes.

We begin by reviewing the challenges and related work in
prototyping interactive behaviors and crowdsourcing. We then
discuss what makes interactive behaviors complex to manually
demonstrate, and how this guides the design choices we made
in SketchExpress. Finally, we report the results of a user study
that we conducted with real crowd workers.

http:crowdsourcing.We

BACKGROUND AND RELATED WORK
SketchExpress builds upon prior work on: 1) prototyping
tools that make dynamic and interactive sketches; 2) continu-
ous real-time crowdsourcing; and 3) end-user programming
by demonstration systems. We discuss prior work in these
domains to provide context for the design choices made by
SketchExpress to help make early stage prototyping of inter-
active behaviors more accessible to both non-expert designers
(requesters) and workers. We also review existing tools that
permits users to create interactive behaviors in GUI prototypes.

Designing Interactive Behaviors in Sketching Tools
UI prototypes are used by system builders to explore new ideas
in depth more quickly. Rather than building fully functional
systems from the beginning, prototypes permit quick trial and
error iterations that can be easily produced and evaluated. Sys-
tems like SILK [16] and DENIM [23] were early efforts that
reduced the overhead of prototyping by recognizing designers’
sketches as interface elements and implementing the idea of
wireframing, respectively. However, the outcome of such tools
is most often a static sketch that does not include the interac-
tive aspects of the GUI. Designing UI behaviors is harder than
designing layouts because the behaviors are more complex to
demonstrate and the tools available to designers have more
limitations [27].There are several professional UI prototyping
tools that can be used to program interactive behaviors, and
though these tools have become more user-friendly, they are
still difficult and time consuming for non-experts to learn and
use. Additionally, these tools often support only a limited set
of animations in specific UI contexts (e.g. wireframe transi-
tions, standard widgets for mobile applications), which makes
it difficult to prototype interactive behaviors for general ap-
plications. We will discuss existing tools more later in this
section. SketchExpress makes the creation process natural
and expressive, recruiting crowd workers "power" interactive
sketches using the demonstrate-and-remix approach without
spending extensive time learning how to use complex tools.

Previous research has also created tools that support dynamic
sketches and are easy to learn. For example, non-expert users
were able to learn K-sketch within 30 minutes and use it to
generate dynamic illustrations that can be played as an anima-
tion within 7 minutes [8]. SketchExpress draws on a number
of important ideas about recording demonstrations, dubbing,
and post-edits from K-sketch and other similar systems [2,
33]. One important distinction between SketchExpress and
K-sketch is that K-sketch creates a single, linear series of ac-
tions to represent a behavior (as if it were a video), whereas
SketchExpress generates a set of animations that can be re-
played independently and simultaneous, allowing workers to
mix and match existing actions to represent new behaviors.
Thus, SketchExpress prototypes can end up in various states
depending on which combination of animations are executed.

Alternatively, Sketchify lets designers generate completed in-
teractive behaviors through a scripting language [32]. Users
can write scripts to configure subtle relationships between ele-
ments and interactive materials (e.g., sensors), focusing mainly
on the interactivity and integration with other input sources.
Their study showed that scripting “does not fit” the overall

sketching system and it also confirms our belief that too many
functions “may cause confusion and overload” [32]. Sketch-
Express transforms a static sketch into an animated prototype
without programming and leverages human computation to
handle aspects that would otherwise require script logic.

More recently, Kitty employed various methods to enable a
dynamic relationship between elements on canvas [13]. While
Kitty was developed for artists to create illustrative animations,
SketchExpress utilizes a more traditional sketching tool. The
process of creating animations in Kitty is close to program-
ming, using: kinetic textures, relational graphs, and functional
mappings. However, to crowdsource prototyping we need
much simpler yet similarly expressive interaction techniques
that non-expert workers can pick up nearly instantaneously.

Most existing tools attempt to simplify the programming pro-
cess of interactive behaviors, retaining the logic behind the
behavior. In contrast, SketchExpress records manual demon-
stration and lets crowd workers remix it to refine the behaviors.
This Wizard-of-Oz approach has been shown effective in mak-
ing the design process accessible to a broader population [9,
26], but has been used on static UI sketches rather than interac-
tive components. An adaptation of the Wizard-of-Oz approach
where human operators manipulate paper prototypes to show
interactive components has been traditionally used to demon-
strate the dynamic behaviors of prototypes [11]. Animating
physical mockups is a widely used and powerful technique,
but it is limited by the physical efforts needed to produce the
cutouts and to manually animate the objects. For example,
the materiality of physical mock-ups makes some types of
behaviors difficult to demonstrate (e.g. scaling, re-coloring,
opacity). In addition, using videotaping and editing to re-
play demonstrations of physical mock-ups can be used, but
again yields a single linear progression of actions, in contrast
to SketchExpress’s recomposable animations that result in
greater expressivity. Lastly, SketchExpress has the advantages
of electronic sketching (discussed in detail in [16]). For exam-
ple, an electronic sketch can be quickly drawn, easily modified
using operations (i.e., save, copy, paste, and edit), and shared
with others (e.g., for remote collaboration).

Crowdsourcing and Human Computation
Crowdsourcing for human computation engages people
through an open call to contribute to a computational pro-
cess in order to solve problems that machines cannot solve
alone. Crowd workers can be recruited on demand from plat-
forms like Amazon Mechanical Turk [1]. These workers are
often quasi-anonymous to requesters [20], and have unknown
and varied skills/experiences. In crowdsourcing, work is of-
ten coordinated by dividing it into small, context-free units
called “microtasks” [24]. Significant effort is required to gen-
erate microtasks and aggregate responses. While microtasks
have been shown to be useful for tasks that have a clear goal
and an established problem-solving process, open-ended tasks
(e.g., designing a UI) are better solved through collaboration
between requesters and workers [6].

Continuous real-time crowdsourcing [18] can address this chal-
lenge since it not only elicits rapid responses but also enables
requester-worker interactions [19]. VizWiz [5] showed that

http:components.An
http:andworkers.We

the crowd could answer visual questions in under a minute.
Legion [18] introduced continuous real-time crowdsourcing
for collective control tasks, and Adrenaline [3] used a “retainer
model” to bring and direct crowds to a task in seconds. Legion-
Tools [10] builds on this idea, and is the first publicly-released
tool for recruiting and managing real-time crowds.

However, tasks that do not have a fixed process and require
continuous involvement, like designing a UI prototype, have
been under-studied. An early crowd-powered system that han-
dled open-ended tasks was Soylent, which provided document-
editing assistance, such as proofreading or text shortening with
a general process: Find-Fix-Verify [4]. Research has contin-
ued to find new ways to coordinate workers on writing tasks
for academic writing [31], creative writing [34, 14], and on
community resources like Wikipedia [15].

Programming by [Remixing] Demonstration
Defining interactive behaviors by first demonstrating and later
remixing them is a response to the trade-off between the ex-
pressiveness of resulting behaviors and the sophistication of
the creation process [29]. This is a simple form of End User
Programming (EUP) [30], and as such, faces similar chal-
lenges in making the flexibility of computation accessible to
non-experts (for an overview, see: [28]). We draw ideas from
Programming by Demonstration (PbD) [7], which explores
how a user’s manual demonstration can specify a program –
or interactive behaviors, in our case. To address this challenge,
we incorporate the notion of “remixing”, an idea commonly
used in electronic music: i.e., a DJ chopping, editing, process-
ing, and arranging audio samples to create music. The idea
of remixing to facilitate real-time collaboration draws upon
the previous work in collaborative improvisation, where musi-
cians can algorithmically remix short musical patterns [22] or
musical notation [21].

Summary of Tools for Prototyping Interactive Behaviors
A range of alternatives exists for creating realistic interactive
behaviors. We have reviewed fifteen such tools to evaluate
existing approaches, examining how the tools support a variety
of interactive behaviors. Overall, we identify the following
three categories of tools.

1. [high programmability - rich expressivity]: these appli-
cations (e.g., Kitty, Sketchify, Flinto, Origami) provide meth-
ods with which a user can specify relationships and states
between objects, equivalent to a programming environment,
which yields interactive and dynamic sketches. This class of
applications often comes with numerous complex configura-
tions that tend to be time-consuming to learn and understand
in order to harness the applications’ full range of expressivity.

2. [preset behaviors for target applications]: these widely
used prototype tools (e.g., InVision or Adobe Experience De-
sign) provide a limited library of behaviors that a user can
choose from for typical common applications (e.g., page tran-
sitions, image overlays, and hyperlinks). However, users may
struggle both with complex configuration, which is propor-
tional to the number of prepared behaviors, and limitations
of the existing preset if the desired behavior is not one of the

predefined ones. Hence, this class of solutions cannot handle
general applications, such as games or animated illustration.

3. [linear timeline]: these applications (e.g., Atomic.io,
Adobe After Effects, K-Sketch) provide a linear timeline editor
that is typically available in film-editing software. While this
class of applications offers rich expression—as a designer can
manipulate elements over time-dimension (frame by frame)—
the linearity of the animation limits the dynamics and inter-
activity of the prototype. Typically, one behavior can be ex-
pressed linearly, but a GUI prototype that has a number of
behaviors cannot be created using a single timeline-based ani-
mation because it can require different outcomes depending
on how a user interacts with it. For instance, pawns in a chess
game have limited behaviors, but the number of possible states
that a chess game can end up in is extremely large.

Most of these applications provide programming-like func-
tionality (or something equivalent) for prototyping interactive
behaviors. However, generating expressive animations often
comes at the price of learning the tools in depth and attain-
ing expertise in at least one of the required programming
concepts. This can be a barrier when utilizing crowd work-
ers to prototype interactive behaviors. We reduce the effort
needed to create interactive behaviors via the demonstrate-and-
remix-replay approach. Reducing the effort needed to create
animations provides allows requesters to explore interactive
behaviors more quickly. Rapid prototyping and iteration is
particularly important as the system targets the early stages
of the design process, where people often exchange ideas by
drawing on a piece of paper (or so-called “napkin sketch”).

THE COMPLEXITY OF INTERACTIVE BEHAVIORS
The complexity of interactive behaviors can vary highly. They
can be as simple as menu items expanding when a drop-down
menu is clicked, or as complex as a game character throwing
fireballs to defeat an enemy character. The dynamic, state-
dependent nature of interactive behaviors makes creating and
automating them difficult without the use of programming (or
something equivalent, such as timeline editors, parameters
configuration, or visual programming).

Why Programming? Typically, interactive behaviors have
three properties: P1: what triggers the interactive behavior,
P2: the (visual) state changes made to the UI, and P3: the
effects of the interactive behavior on the underlying state,
which may affect following behaviors. For instance, in our
Super Mario example, the textual description of an interactive
behavior can be: “When Mario jumps and lands on top of an
enemy turtle (P1), the turtle should hide its legs and head in
the shell and stop moving (P2); the shell can then be used as
a weapon if Super Mario pushes it (P3).”1 The description
includes user interaction, state recognition, trigger conditions,
animated behaviors, and abstract state changes. In addition to
animated visual changes, abstracted conditions that influence
triggering animations (here, P1 and P3) make it difficult to
realize the behavior without programming.

1https://youtu.be/rLl9XBg7wSs?t=17m38s

http:Atomic.io

Why Wizard-of-Oz? SketchExpress uses a collective Wizard-
of-Oz approach to address P1 and P3, letting crowd workers
manually demonstrate interactive behaviors for visual changes
(P2). It is relatively easy for a crowd “Wizard” to understand
the triggering condition (P1) and relationships between ele-
ments (P3). In [17], the authors showed that crowd workers
can accurately respond to user interactions in seconds and vary
the demonstration based on the system state. However, it can
be challenging for a worker to demonstrate complex animated
behaviors due to the limitations of manual demonstration (i.e.,
limits in human motor abilities, accuracy, and the number of
simultaneous actions). Thus, we focus on improving the ani-
mation process (P2) and study how we can computationally
support workers when creating complex interactive behaviors
composed of multiple animations, which can be challenging,
or even impossible, to manually demonstrate.

Limitations of Manual Demonstration
In this section, we outline the key challenges in manually
demonstrating interactive behaviors accurately.

Temporal Execution of Interactive Behaviors
A complex interactive behavior includes a sequence of differ-
ent kinds of state changes. We define an operation as one or
more events of the same kind enabled by one user interaction
(such as a click, drag-and-drop, or pressing of a key) where an
event is an atomic state change in canvas (e.g., color change,
translation). One operation can be a long sequence of events
when the operation involves smoothly animated elements (e.g.,
moving, resizing, rotating). We concluded that an operation is
the most effective building block for describing an interactive
behavior and for notating the process of a manual demonstra-
tion for later remixing. Recall the knock-out gesture of the
turtle in Super Mario game2: the turtle shell should bounce
off the ground once flipped upside down. The operation of
flipping upside down should happen instantly (rotation oper-
ation), and the operation of bouncing off the ground should
occur for a fixed duration (translation operation). To manually
demonstrate this behavior, one can rotate the turtle shell image
to make it flipped upside down, and drag-and-drop the icon
over a trajectory. However, not only is it difficult to drag-
and-drop the icon exactly within a fixed animation duration,
but it is physically impossible to instantly rotate the icon and
drag-and-drop immediately after the rotation because this re-
quires grabbing the icon in two exclusive cursor modes, which
requires a mode switch. The eventual state after the manual
demonstration may be correct, but the intermediate process
is far from the realistic – the demonstrated behavior takes
several seconds with delays between operations. In SketchEx-
press, the remixing functionality allows workers to adjust the
duration of each step in an animation.

Simultaneous Transformation
Another challenge in certain behaviors is simultaneously trans-
forming multiple elements in different ways. Suppose a user
wants to illustrate a stone rolling down hill. The stone should
be translated in one direction and rotated at the same time.
This behavior cannot be demonstrated manually because these

2https://youtu.be/rLl9XBg7wSs?t=10m24s

are two exclusive operations (translation and rotation). One
possible solution would be to demonstrate the two different
animations separately and replay them simultaneously. If
multiple animations transform the same element, the result-
ing animation should be then additively synthesized (known
as dubbing). To this end, we specifically implemented the
record function inSketchExpress to calculate the difference
between two events (the delta, Δ), instead of recording a series
of snapshots for replay exactly as demonstrated.

Animation as a re-usable object
In many GUIs we reviewed, we found that common behaviors
are often shared by different objects. However, in manual
demonstration, the demonstrated behavior can only be bound
to one specific element during execution. Since SketchEx-
press retains behaviors after demonstration, it can help make
animations reusable for different elements and use them in a
generative fashion (i.e., clone and concatenate them).

Advanced Visual Effects
There exist dynamic transformations that cannot be demon-
strated without generative or deformative techniques. Such
transformations are typically available in professional anima-
tion software (e.g., Adobe After Effects, or Autodesk Flame)
For example, morphing one object into another object or visual
effects (such as an explosion + particles) are difficult to man-
ually demonstrate without simplification. We exclude these
kinds of advanced transformations, as such effects are not
essential in early sketches and can be simplified with images.

In this section, we reviewed what characteristics of interactive
behaviors make them challenging to manually demonstrate. In
the next section, we address these challenges and describe the
design choices we made in developing SketchExpress.

SKETCHEXPRESS
SketchExpress’s goal is to let crowd workers help create and
power behaviors in interactive GUI prototypes easily and ac-
curately. To recap, the primary challenges are:
• archiving manual demonstrations as reusable and replayable

animations;
• allowing for remixing of manually-demonstrated anima-

tions to have more precise timing;
• creating interactive behaviors that animate multiple ele-

ments simultaneously;
• allowing crowd workers to learn to do the tasks above within

minutes of first using the system.
In the rest of this section, we introduce the animation func-
tions that crowd workers are able to use to prototype interactive
behaviors. We then describe the implementation of SketchEx-
press in detail and discuss how it addresses these challenges.

Platform
SketchExpress is built on top of the existing web-based Appari-
tion system (see [17] for more detail) which provides a shared
canvas (modified from SVG Edit, a web-based SVG drawing
application [25]) where a requester and a crowd worker can
collaborate in real time. A requester verbally describes an
interactive behavior via streaming audio channel while sketch-
ing on the canvas. The requester’s interface is same as the

http:behaviors.We
http:curately.To
http:operation).To
http:rotating).We
http:changes.We

Figure 2. (1) Initial State: arrow pointed vertically upwards. (2) After
first replay: arrow pointed 60 degrees clockwise. (3) After second replay:
arrow pointed 120 degrees clockwise. Reset will restore state (1).

worker’s interface except that it has a simplified tool bar with
only a free-hand drawing tool (pencil) and a select tool. As
the canvas is synchronized in real-time, the requester and the
workers see the same content and updates.

Recording Demonstration
SketchExpress provides the ability to record manually demon-
strated behaviors, which are stored as a series of time-stamped
snapshots of the element that can be later replayed as an an-
imation. To record, workers: 1. press record (Fig.1-4), 2.
demonstrate the behavior on the canvas, 3. stop recording, and
4. the server post-processes the recorded log to construct a re-
playable animation. Each recorded animation can be replayed,
reset, and remixed. The state of each animation is shared
in real time in the side panel to provide awareness (Fig.1-1),
which helps avoid conflicts in replaying and remixing anima-
tions. Pressing the Replay button triggers the animation to
begin again. Pressing the Reset button restores the initial states
of the elements used in the animation (Fig.1-3).

One key benefit of using the record-and-replay method com-
pared to manual demonstration is that the interactive behaviors
then persist as part of the sketch and can be replayed later.
While the recording function simply logs all the snapshots of
the elements that are changed by the crowd worker, Step 4
categorizes events and generates a series of operations.

There are three supported types of operations: create,
change, and delete. The change operation can be
broken into five sub-categories: move, rotate, resize,
fill-change, and stroke-change. Depending on its type,
one operation can have a series of multiple events (e.g., move)
or a single event, typically color changes (e.g., fill-change,
stroke-change). When replaying an animation, each opera-
tion is reproduced in real-time as it was demonstrated during
recording, including the delays between operations. The oper-
ations are listed, showing the type of each operation and the
associated timing, in a table in the remix panel (Fig.4).

Recording and Replaying By Delta
In the post-processing step (Step 4), two adjacent events are
compared to compute the difference (Δ) between two snap-
shots within an operation. The replayed behavior is thus the
relative state difference between the initial state and the ending

Figure 3. SketchExpress facilitates the process of creating complex an-
imations involving multiple transformations on one element. In this ex-
ample, a worker can create separate rotate and translate operations, and
then replay them together to create the rolling stone animation.

state (A0 − A) rather than an absolute frame-for-frame repro-
duction of the demonstration. There are a few advantages in
terms of expressiveness to replaying an animation by delta (as
opposed to via a series of snapshots).

First, an element can ’own’ a behavior instead of the behavior
being reproduced exactly as it was demonstrated. Depending
on the current state of the element, each behavior may result
in a different animation and yields different outcomes. For
example, if an animation is created by recording the rotation
of an object by 60 degrees, the resulting animation is not an
exact reproduction of the originally recorded animation but
instead a rotation by 60 degrees from the element’s current
position (see the example in Fig.2). Second, this enables
multiple transformations on one element. Automated replay
of multiple animations enables complex behaviors that cannot
be easily demonstrated by manipulating them (see the rolling
stone example in Fig.3). A worker can replay and combine
animations in any order to simulate UI behaviors.

Remixing Animations
SketchExpress provides remixing functions to control the tim-
ing of each operation of a recorded animation. While manual
demonstration can be spatially expressive, the temporal exe-
cution of the demonstration is limited by the time it takes to
physically animate the elements. Using remix, workers can
adjust the duration of each operation in an animation.

The main interface for remixing is the remix table (Fig.4-1).
For each operation, there are three options to choose from:
instant, skip, and real-time (Fig.4-3). Instant makes
the transition from the operation’s initial state to the final state
occur immediately, which is useful when the intermediate op-
erations are not needed in the replay (e.g., for a “teleportation”
animation). Skip allows one to bypass the recorded opera-
tion, which is useful to remove unnecessary actions captured
while recording. Real-time replays the operation as it was
demonstrated with a specified duration that can be stretched
or compressed (Fig.4-4). Real-time exactly reproduces the
recorded demonstration if the duration is not modified.

Depending on the type of animation, the initial state of each
replay needs to be reset before/after replay and can be looped
when it is periodic (e.g., a non-player character patrolling in
a game). These options not only automate some of the pro-
cess, but increase the kinds of behaviors that SketchExpress
can present. Overall, remixing an animation in the temporal
dimension is a key function in transforming a demonstration

Figure 4. Remixing helps workers make more expressive animations.
The interface consists of: (1) Operation list: provides workers with a
discrete view of an animation as a series of operations. (2) Operation
duration: if clicked, a container of remix functions is expanded. (3) Re-
play options: you can choose for each element if it will be skipped (not
displayed), if it will appear instantly, or if it will appear in real-time. (4)
Slider and input: modify the operation’s speed and duration. (5) Trash
icon: skip the operation or delay. (6) Check mark and highlight bor-
der: indicate the current operation in preview. (7) Element replacement:
reuses the animation for one element as the animation for another one.

into a precisely timed animation, which not only makes the an-
imation look smoother, but also allows workers to demonstrate
behaviors without being concerned with making the initial
demonstration perfectly temporally accurate.

One challenge for workers is to associate the contents of the
remix table with the animated elements on the canvas. Sketch-
Express provides multiple visualization techniques for workers
to connect entries with canvas elements. First, when recording
an animation, the list of operations is generated on-the-fly
during demonstration, allowing the worker to immediately
associate actions on the canvas with entries that will later be
used to remix the animation. Second, whenever an animation
is replayed, the entry corresponding to the currently-playing
operation is highlighted. The delay row is highlighted if the
animation is in between operations. Lastly, whenever a worker
places their cursor over one a row in the table, the elements
associated with that operation are highlighted (as seen in pro-
gramming environments that highlight program outcomes as-
sociated with code text [12, 35]). In order to clearly visualize
“what is remix-able”, we made use of a consistent format: a
yellow-dotted line under options throughout the remix table
that can be clicked and remixed.

One of the benefits of the demonstrate-remix-replay approach
is that it is easy for non-experts to understand the controls
that they are given. The expressiveness afforded by Sketch-
Express is defined by the multiplication of two orthogonal di-
mensions (time and space). For spatial dimension, it includes
any change that a worker can make in the drawing application,
which can be controlled in the demonstrate phase. For tem-
poral dimension, there are four types of control actions that
can be conducted per operation: compress, stretch, skip,
and instant. While we could have created remix functions
that can modify the spatial data of a demonstrated behavior,
we deliberately limited the remixing capability only to the
temporal dimension of an operation and delays in between,
helping workers more quickly understand the tool’s range of
expressiveness. Therefore, if the demonstrated behavior is
not spatially correct, workers need to re-record the behavior
again, leveraging humans’ fine motor function for the expres-
siveness given there’s no time pressure. While we could have
added spatial remix functions to correct visual trajectory of
animation, we believe that the simple structure of demonstrate-
remix helps non-expert crowd workers learn to use the tools
by themselves and use them after a brief exploration.

Animation as a First Class Object
SketchExpress provides features that treat animations as inde-
pendent from the elements on the canvas – akin to a first-class
programming object. For example, a worker can “clone” an
animation and switch the element that is used in the animation
so a certain behavior can be applied to different elements (e.g.,
letting us apply our example turtle knock-out behavior to other
enemy characters). A worker can replace existing elements
of an animation in the “Required Elements” and “Created El-
ements” list below the buttons in the remix mode (Fig.4-7).
Once switched, any operation that was associated with the
original element works for the new one. To avoid orphaned
animations, when a user deletes an element associated with an
animation, SketchExpress alerts a worker with a list of the af-
fected animations. Cloning an animation can be used to create
multiple remixed versions of one demonstrated behavior. Fi-
nally, animations can be imported/exported across sessions by
archiving them json content. Treating animations as first-class
objects lets workers easily compose new animations.

EXPERIMENTS

User Study - UI Tasks
To verify SketchExpress’ ability to help crowd workers pro-
totype interactive behaviors in various UIs, we ran a study in
which crowd workers were given behavior descriptions and
asked to collectively create them using our interface. We first
selected five common interfaces that require complex interac-
tive behaviors (difficult to demonstrate) from various domains
(from mobile to game design). Our study controlled for varia-
tion in natural language descriptions by having one of authors
read from a script describing the tasks across the sessions.
Since the goal of this work is to confirm if crowd workers can
create behaviors easily and accurately, we wanted to limit the
chance that confusion would arise from variations in either
verbal communication or the description of task content. We
carefully generated the script to reflect the target use cases by

http:content.We
http:interface.We

transcribing a non-designer, who is not an author on this paper,
verbally describing the interactive behaviors in the tasks. As
this study focuses on system feature effects on the interactive
behaviors, not the static parts of the sketch, a graphical user
interface is given to crowd workers and the interface has all the
elements necessary for a worker to demonstrate the behaviors
that will be requested. Crowd workers are instructed to create
interactive behaviors for each task, resulting in a total of nine
interactive behaviors across five sketches. Each task (T) and
interactive behavior (IB) is described to workers as follows:

• Task 1 (T1): Super Mario Game – on the ground, Super
Mario jumps to defeat a turtle (a.k.a. Koopa) and an enemy
mushroom (a.k.a. Goomba)

– IB1: Super Mario jumping forward
– IB2: Turtle Knock out gesture
– IB3: Mushroom Knock out gesture

• Task 2 (T2): Traffic lights Demonstration
– IB4: Traffic light changing color from green to yellow

to red with a two second delay between each change

• Task 3 (T3): To-do List Application
– IB5: Crossing off an item (the 1st item in the list) by

showing a check mark in a check box and a strike-
through the text simultaneously and instantly

– IB6: Crossing off an item (the 2nd item in the list)

• Task 4 (T4): A cannon-firing game
– IB7: A cannonball from the pile of cannonballs is

loaded into a cannon barrel, at which point the cannon
shoots it out to destroy an enemy character

– IB8: Same as IB7 for another cannonball and the sec-
ond enemy character

• Task 5 (T5): Unlock screen
– IB9: A user “swipes to unlock“ a smartphone screen

These tasks focus on remixing animations rather than the
reusability, for which benefits may emerge over time. For
example, making IB3 could have benefited from re-using IB2.

Participants
We recruited 18 unique crowd workers from Mechanical Turk
who have never used SketchExpress before. We limited the
crowd workers to those who are in the U.S. and have an ap-
proval rate of over 70%. All workers who applied for the work
were asked four binary questions to see if they were eligible
to complete our user study: 1) if they can listen to verbal in-
structions through audio streaming, 2) if they are familiar with
at least one common creative application (Microsoft Power-
Point/Microsoft Point/Google Draw/Adobe Photoshop), 3) if
they are using a specific web browser with which SketchEx-
press has been developed and rigorously tested, and 4) if they
have sufficient time to complete the entire study (which ranged
from 30 to 60 minutes). If one or more of the answers were
negative, they were paid only for filling out the pre-screening
survey (a flat rate of $0.30). If they were eligible for the study,
they were directed to a tutorial video made for the specific
condition they were in (max 4 minutes).

Once they finished watching the video, workers were routed
from a retainer pool to the task interface in advance to ensure
they are available when needed. Once at the task page, workers
were on standby for the span of multiple requests (from IB1
to IB9) for a single session. Workers were paid a base rate
of $10.20 per hour. At the beginning of each session, all
participants were given a brief introduction to the experiment
and were asked to familiarize themselves with the application
by exploring what was covered in the tutorial video until they
felt comfortable using the tool (warm-up time). During the
warm-up time, workers were not given specific instructions
unless they asked for clarification. At the end of the warm-up
time, the requester checked if workers knew how to use the
set of functions that were required to solve the tasks, which
was included in our measure of warm-up time duration.

Experimental Design
Our study had three experimental conditions: (C1) the con-
trol condition, which used manual demonstration only (recre-
ating [17]), (C2) the demo-and-replay condition where the
application let workers record and replay animations but had
no remix function, (C3) and the demo-remix-replay condition
(the SketchExpress condition) that contained all proposed sys-
tem features. Comparing the control condition ((C1)) with
the other two ((C2)/(C3)) allowed us to understand the effec-
tiveness of the demonstrate-remix-and-replay approach.We
include an intermediate condition (C2) in order to account for
the potential improvement (or detriment) in completion time
or the accuracy. Our control condition ((C1)) reflects the orig-
inal model used in the previous work, in which crowd workers
listen and respond to demonstrate the described behaviors [17].

Each crowd worker was randomly assigned to one of the three
experimental conditions (a between-subjects design) and each
was asked to complete five tasks. Though the order in which
the five tasks were presented was randomized, the order of the
interactive behaviors within each task was fixed in the order
presented above. Three workers left their session without
completing all the tasks. This led us to recruit more workers so
each condition was completed by the same number of workers.
For each condition we had output data for the five tasks and
nine animations we described earlier in the paper.

More specifically, tasks were conducted in the following order:

First Demo. A requester described an interactive behavior
verbally and asked crowd workers to demonstrate (C1) or
create an animation for it (C2, C3). Once the crowd believed
they were done with the demonstration, they gave a “done”
signal to the requester by changing the color of a circle (from
red to green). If a worker asked any clarification question, the
requester repeated the description one more time.

Second Demo. Once all interactive behaviors in a task
were completed, the requester asked workers to demonstrate
each behavior once more. Workers could use recorded (and
remixed) animations in C2 and C3, while in C1 workers had
to manually demonstrate the behavior each time. We asked
workers to demonstrate behaviors twice in order to validate the
benefits of reduced time for replayable interactive behaviors
with a button click compared to manual demonstration.

http:approach.We

Performance Measures
For each interactive behavior, we measured the accuracy by
calculating precision and recall. Precision and recall indicate
the overall quality of created animations according to the ver-
bal description given to the workers. This was done based on
scoring rubrics that we created to evaluate the crowd workers’
demonstrations. The rubrics were created based on the ver-
bal description that we provided to the crowd workers3. The
annotators countered potential bias using well-defined yes/no
questions, not subjective ones. Some of the examples include:

“Do the operations happen in the correct order?” (Task 1,2,4,5),
“Does Super Mario move forward?” (Task 1),
“Is there only one light (at least, and at most) on at any point in
time?” (Task 2).

To calculate precision and recall, annotators counted the num-
ber of rubrics that were satisfied (True Positive), the number
of rubric entries that workers missed (False Negative), and
the number of unnecessary actions in the animation (False
Positive). In addition, we annotated animations’ start and
end times, as well as other relevant events, such as replay,
record, remix, requests for clarification, and reset (if available
in the condition). These timestamps were used to calculate
the average time spent completing each request. We manually
annotated both the time and accuracy for three videos and
assessed the consistency of these quantitative measurements
by calculating intraclass correlations (ICC). The annotators
had perfect agreement on precision and recall (ICC: 1.00) and
nearly perfect agreement on time annotation (ICC: 0.99). We
also annotated how long each participant spent getting familiar
with the tool (warm-up).

RESULT: A SKETCH THAT BEHAVES
Now we discuss SketchExpress’ quality and latency perfor-
mance in the context of our two requests (First Demo and
Second Demo). To examine the statistical significance, we ran
a pairwise 2-tail t-test between two conditions (resulting in a
total of three t-tests per metric).

Improving Quality
Figure 5 shows that SketchExpress significantly improves
animation quality, resulting in 90.0% (σ = 11.2%) overall
recall for our system condition (C3) – a 27.3% improvement
compared to the control condition (C1, 62.7%, σ = 19.8%
p < 0.001). However, the recall in the demo-replay function
without remix (C2) was not significantly different from the
control condition (C1). This indicates that when the requested
behaviors are complex, the addition of a remix function is
critical for improving recall. On the other hand, when creating
the simplest behavior, (IB1, which needed only one operation),
there was not a significant difference between C1 and C3.
Observationally, this is because the simpler behavior could be
manually demonstrated accurately, thus there was not much
room for improvement using remix.

There were significant improvements in precision across
all conditions. Having replay function leads to a gain of
3Our rubrics are available for download here:
https://sketchexpress.github.io/rubrics.html

Figure 5. Though there is not a significant difference in recall between
(C1) and (C2), recall is significantly higher in (C3) compared to (C1) and
(C2) (both p<.001). There are significant increases in precision from C1
to C2 (p<.001) and from C2 to C3 (p<.001).

7.8% in precision, and the effect was statistically significant
(p < 0.001). Precision in the system condition (C3) is almost
perfect (99.2%, σ = 2.9%), which is not surprising given that
workers could choose to skip unnecessary operations in the
remix mode, which was not available in (C1) and (C2). Remix-
ing results in a 12.3% increase in precision when comparing
(C3) to the control condition (C1,σ = 20.7%, p < 0.001).

When replay functionality was available, the adoption rate
was very high: when a requester asked for the behavior to be
demonstrated the second time, we observed that all partici-
pants with access to replay (C2, C3) chose to use it for the
animation they already created, instead of performing a new
demonstration. The resulting sketch in the control condition
(C1) was a static drawing of a graphical user interface that
does not contain the interactive behaviors during the session,
the sketches in (C2) and (C3) included behaviors that can
reproduce the behaviors that were described in future sessions.

Improving Long-Term Latency
The First Demo result shows that, as anticipated, it took signif-
icantly more time to demonstrate and remix a demonstration
(C3, 174.5s, σ = 114.4s) on average than it did to just perform
the demonstration itself (C1, 39.4s, σ = 46.7s, p < 0.001).
Even just recording the demonstration and replaying it to re-
view added time compared to the control condition (C2, 78.3s,
σ = 60.6s, p < 0.001). In addition, workers spent more time
warming-up to the demo-remix-replay condition (C3, 10.2
min, σ = 1.99m) on average than they did in the control con-
dition (C1, 5.44 mins, σ = 3.49m, p < 0.05). There was not a
significant difference in warm-up time between the remaining
two conditions (C2, 6.9 mins, σ = 3.67m).

While the initial creation of higher quality animations takes
more time, once the behavior is recorded and remixed, it al-
lows workers to respond very quickly to requests by replaying
existing behaviors. The average time it takes to perform an

https://sketchexpress.github.io/rubrics.html
http:0.99).We
http:request.We

animation the second time is 35.6s, 19.1s, and 12.4s in (C1),
(C2), and (C3), respectively. Importantly, the demonstration
speed in (C3) was significantly faster than it is in the control
condition (C1, p < 0.05). The main source of this difference
comes from the methods used to restore the initial state, which
is depicted by the green portion of the graph in Fig.6. In
the control condition (C1), a participant needed to manually
restore the state to re-demonstrate a behavior on the canvas,
while in the other two conditions, participants reset the canvas
using the ‘Reset’ button. This is especially effective in the
demo-remix-replay condition (C3) as workers frequently reset
the state while they are remixing an animation. This result
has implications for interface prototypes that utilize the same
animation multiple times. Having both remix and replay func-
tions potentially makes the creation of prototypes that use the
same complex behavior multiple times even more efficient.

Task Engagement
One interesting observation we made was that crowd work-
ers constantly tried to refine the animation in two conditions
with demo-remix-replay (C2, C3), indicating high task en-
gagement. The number of trials, the number of requests to
clarify the user request, and the number of replays of the inter-
mediate results is higher in the demo-remix-replay condition
than in the other two (if available). We even witnessed several
instances of crowd workers “rehearsing” the demonstration
before recording. Some crowd workers spent additional time
re-demonstrating and remixing the animation in (C3) even
after generating a sufficiently accurate animation. In these
cases, we are not exactly sure why the workers kept trying to
re-demonstrate and refine the behavior as the animation gen-
erated was already good-enough, but some workers spent an
excessively long time on the task (e.g., maximum time: 13.3
minutes for one animation), though previously work would
categorize this type of worker as an “eager beaver” [4]. This
indicates that we need a way to interrupt the excessive im-
provement to avoid wasting effort, but the natural desire to
improve on the reusable components is promising.

In general, workers appear to be actively engaged with the
tasks. Though we did not have a formal survey, five crowd
workers voluntarily provided positive feedback about the task
in the chatbox. To name a few: “This is fun”, “It was a great
study”, “Wow, this is great. I become an animator.”, “How can
I download animation on my PC?” This is promising because
if crowd workers find these kinds of tasks more engaging than
other tasks available on MTurk, it will be easier to re-recruit
participants who have already used our interface, allowing
workers to gain expertise in the task over time.

CONCLUSIONS AND FUTURE WORK
This paper presents the design, implementation, and evaluation
of SketchExpress, a system that enables non-expert crowd
workers to quickly and easily create replayable animations that
persist in electronic sketches. This, in turn, helps requesters
more effectively prototype interactive UI behaviors. Crowd
"Wizards-of-Oz" can quickly and accurately create replayable
animations in minutes with a 27% improvement in recall.

Figure 6. Latency of the 1st demo(blue) and the 2nd demo(yellow);
The time it takes to demo-remix-replay an animation is longer than the
other two conditions, but once an animation is created (the 2nd demo), a
worker can respond quickly by replaying the animation. This is because
the amount of time needed to respond to the demonstration request is the
time it takes to restore the initial state needed to reproduce the requester
behavior (the portion of the green bar in the yellow one).

Future work aims to better understand requester’s side of the
interaction. Our study controlled for requester variation by
carefully generating and reading a script that reflects the target
use cases. However, in real-world settings, requesters’ verbal
descriptions can vary depending on a number of factors (e.g.,
expertise, trust in crowdsourcing) and crowd workers may
interpret them incorrectly. This poses a broader question of
how requesters communicate with groups of non-expert crowd
workers. We hope to potentially identify and learn from the
verbal and visual cues requesters utilize to communicate with
crowd workers. This can help system builders better under-
stand the characteristics that make SketchExpress more or less
useful, helping them to generalizing our approach to other
nearly real-time crowdsourcing systems [5, 6, 31].

In addition, future work may explore how the system can learn
from different instances of behavior created by multiple crowd
workers, as well as edits made in the refinement steps to gener-
alize a class of animation into an interactive behavior. Ideally,
the system can automatically vary the animated behavior by
itself depending on the different system states and settings.
For example, Super Mario may jump differently if there is a
brick wall in front of him compared to if the path ahead is
clear. In the future, we plan to use machine learning to learn
the structure of interactive behaviors and analyze the crowd’s
demonstrations based on requesters’ verbal descriptions of
behaviors. Eventually, we hope to develop a computational
system that can help automate the creation process through
the use of both human and machine intelligence.

ACKNOWLEDGEMENTS
This project was supported by the University of Michigan
MCubed program. We thank Mark W. Newman, and Brandon
Keelean for their input, as well as all of our study participants.

http:program.We
http:chatbox.To

REFERENCES
1. 2017. Amazon’s Mechanical Turk. (2017).

http://www.mturk.com.

2. Connelly Barnes, David E. Jacobs, Jason Sanders, Dan B
Goldman, Szymon Rusinkiewicz, Adam Finkelstein, and
Maneesh Agrawala. 2008. Video Puppetry: A
Performative Interface for Cutout Animation. In ACM
SIGGRAPH Asia 2008 Papers (SIGGRAPH Asia ’08).
ACM, New York, NY, USA, Article 124, 9 pages. DOI:
http://dx.doi.org/10.1145/1457515.1409077

3. Michael S. Bernstein, Joel R. Brandt, Robert C. Miller,
and David R. Karger. 2011. Crowds in Two Seconds:
Enabling Realtime Crowd-Powered Interfaces. In User
Interface Software and Technology (UIST). 33–42. DOI:
http://dx.doi.org/10.1145/1866029.1866080

4. Michael S. Bernstein, Greg Little, Robert C. Miller,
Björn Hartmann, Mark S. Ackerman, David R. Karger,
David Crowell, and Katrina Panovich. 2010. Soylent: a
word processor with a crowd inside. In User Interface
Software and Technology (UIST). 313–322. DOI:
http://dx.doi.org/10.1145/1866029.1866078

5. Jeffrey P. Bigham, Chandrika Jayant, Hanjie Ji, Greg
Little, Andrew Miller, Robert C. Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White, and
Tom Yeh. 2010. VizWiz: nearly real-time answers to
visual questions. In User Interface Software and
Technology (UIST). 333–342. DOI:
http://dx.doi.org/10.1145/1866029.1866080

6. Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang,
Walter S. Lasecki, and Steve Oney. 2017. Codeon:
On-Demand Software Development Assistance. In
Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA, 6220–6231. DOI:
http://dx.doi.org/10.1145/3025453.3025972

7. Allen Cypher, Daniel C. Halbert, David Kurlander, Henry
Lieberman, David Maulsby, Brad A. Myers, and Alan
Turransky (Eds.). 1993. Watch What I Do: Programming
by Demonstration. MIT Press, Cambridge, MA, USA.

8. Richard C. Davis, Brien Colwell, and James A. Landay.
2008. K-sketch: A ’Kinetic’ Sketch Pad for Novice
Animators. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’08). ACM,
New York, NY, USA, 413–422. DOI:
http://dx.doi.org/10.1145/1357054.1357122

9. Richard C. Davis, T. Scott Saponas, Michael Shilman,
and James A. Landay. 2007. SketchWizard: Wizard of
Oz Prototyping of Pen-based User Interfaces. In User
Interface Software and Technology (UIST). 119–128.
DOI:http://dx.doi.org/10.1145/1294211.1294233

10. Mitchell Gordon, Jeffrey P. Bigham, and Walter S.
Lasecki. 2015. LegionTools: A Toolkit + UI for
Recruiting and Routing Crowds to Synchronous

Real-Time Tasks. In Adjunct Proceedings of the 28th
Annual ACM Symposium on User Interface Software &
Technology (UIST ’15 Adjunct). ACM, New York, NY,
USA, 81–82. DOI:
http://dx.doi.org/10.1145/2815585.2815729

11. Saul Greenberg, Sheelagh Carpendale, Nicolai
Marquardt, and Bill Buxton. 2011. Sketching user
experiences: The workbook. Elsevier.

12. Philip J. Guo. 2013. Online Python Tutor: Embeddable
Web-based Program Visualization for Cs Education. In
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New
York, NY, USA, 579–584. DOI:
http://dx.doi.org/10.1145/2445196.2445368

13. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. 2014. Kitty: Sketching
Dynamic and Interactive Illustrations. In Proceedings of
the 27th Annual ACM Symposium on User Interface
Software and Technology (UIST ’14). ACM, New York,
NY, USA, 395–405. DOI:
http://dx.doi.org/10.1145/2642918.2647375

14. Joy Kim, Justin Cheng, and Michael S. Bernstein. 2014.
Ensemble: Exploring Complementary Strengths of
Leaders and Crowds in Creative Collaboration. In
Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing
(CSCW ’14). ACM, New York, NY, USA, 745–755. DOI:
http://dx.doi.org/10.1145/2531602.2531638

15. Aniket Kittur, Bongwon Suh, Bryan A. Pendleton, and
Ed H. Chi. 2007. He Says, She Says: Conflict and
Coordination in Wikipedia. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’07). ACM, New York, NY, USA, 453–462.
DOI:http://dx.doi.org/10.1145/1240624.1240698

16. James A. Landay and Brad A. Myers. 1995. Interactive
Sketching for the Early Stages of User Interface Design.
In Human Factors in Computing Systems (CHI). ACM
Press/Addison-Wesley Publishing Co., 43–50. DOI:
http://dx.doi.org/10.1145/223904.223910

17. Walter S. Lasecki, Juho Kim, Nick Rafter, Onkur Sen,
Jeffrey P. Bigham, and Michael S. Bernstein. 2015.
Apparition: Crowdsourced User Interfaces That Come to
Life As You Sketch Them. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 1925–1934. DOI:
http://dx.doi.org/10.1145/2702123.2702565

18. Walter S. Lasecki, Kyle I. Murray, Samuel White,
Robert C. Miller, and Jeffrey P. Bigham. 2011. Real-time
Crowd Control of Existing Interfaces. In Proceedings of
the 24th Annual ACM Symposium on User Interface
Software and Technology (UIST ’11). ACM, New York,
NY, USA, 23–32. DOI:
http://dx.doi.org/10.1145/2047196.2047200

http://dx.doi.org/10.1145/1457515.1409077
http://dx.doi.org/10.1145/1866029.1866080
http://dx.doi.org/10.1145/1866029.1866078
http://dx.doi.org/10.1145/1866029.1866080
http://dx.doi.org/10.1145/3025453.3025972
http://dx.doi.org/10.1145/1357054.1357122
http://dx.doi.org/10.1145/1294211.1294233
http://dx.doi.org/10.1145/2815585.2815729
http://dx.doi.org/10.1145/2445196.2445368
http://dx.doi.org/10.1145/2642918.2647375
http://dx.doi.org/10.1145/2531602.2531638
http://dx.doi.org/10.1145/1240624.1240698
http://dx.doi.org/10.1145/223904.223910
http://dx.doi.org/10.1145/2702123.2702565
http://dx.doi.org/10.1145/2047196.2047200
http:Education.In
http:http://www.mturk.com

19. Walter S. Lasecki, Phyo Thiha, Yu Zhong, Erin Brady,
and Jeffrey P. Bigham. 2013. Answering Visual
Questions with Conversational Crowd Assistants. In
Proceedings of the 15th International ACM SIGACCESS
Conference on Computers and Accessibility (ASSETS
’13). ACM, New York, NY, USA, Article 18, 8 pages.
DOI:http://dx.doi.org/10.1145/2513383.2517033

20. Matthew Lease, Jessica Hullman, Jeffrey P. Bigham,
Michael S. Bernstein, Juho Kim, Walter S. Lasecki,
Saeideh Bakhshi, Tanushree Mitra, and Robert C Miller.
2013. Mechanical turk is not anonymous. (2013).
http://dx.doi.org/10.2139/ssrn.2228728

21. S. W. Lee and J. Freeman. 2013. Real-Time Music
Notation in Mixed Laptop Acoustic Ensembles.
Computer Music Journal 37, 4 (Dec 2013), 24–36. DOI:
http://dx.doi.org/10.1162/COMJ_a_00202

22. Sang Won Lee, Jason Freeman, Andrew Colella, Shannon
Yao, and Akito Van Troyer. 2012. Evaluating
Collaborative Laptop Improvisation with LOLC. In
Proceedings of the Symposium on Laptop Ensembles and
Orchestras. 55–62.

23. James Lin, Mark W. Newman, Jason I. Hong, and
James A. Landay. 2000. DENIM: Finding a Tighter Fit
Between Tools and Practice for Web Site Design. In
Human Factors in Computing Systems (CHI). 510–517.
DOI:http://dx.doi.org/10.1145/332040.332486

24. Greg Little, Lydia B. Chilton, Max Goldman, and
Robert C. Miller. 2010. TurKit: human computation
algorithms on mechanical turk. In User Interface
Software and Technology (UIST). 57–66. DOI:
http://dx.doi.org/10.1145/1866029.1866040

25. Mark MacKay. 2017. Method Draw.
https://github.com/duopixel/Method-Draw. (2017).

26. Lennart Molin. 2004. Wizard-of-Oz Prototyping for
Co-operative Interaction Design of Graphical User
Interfaces. In Proceedings of the Third Nordic
Conference on Human-computer Interaction (NordiCHI
’04). ACM, New York, NY, USA, 425–428. DOI:
http://dx.doi.org/10.1145/1028014.1028086

27. B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and A. Ko.
2008. How designers design and program interactive

behaviors. In 2008 IEEE Symposium on Visual
Languages and Human-Centric Computing. 177–184.
DOI:http://dx.doi.org/10.1109/VLHCC.2008.4639081

28. Brad A. Myers, Andrew J. Ko, and Margaret M. Burnett.
2006. Invited Research Overview: End-user
Programming. In CHI ’06 Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’06). ACM, New
York, NY, USA, 75–80. DOI:
http://dx.doi.org/10.1145/1125451.1125472

29. Brad A. Myers, Richard McDaniel, and David Wolber.
2000. Programming by Example: Intelligence in
Demonstrational Interfaces. Commun. ACM 43, 3 (March
2000), 82–89. DOI:
http://dx.doi.org/10.1145/330534.330545

30. Bonnie A Nardi. 1993. A small matter of programming:
perspectives on end user computing. MIT press.

31. Michael Nebeling, Alexandra To, Anhong Guo, Adrian A.
de Freitas, Jaime Teevan, Steven P. Dow, and Jeffrey P.
Bigham. 2016. WearWrite: Crowd-Assisted Writing from
Smartwatches. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 3834–3846. DOI:
http://dx.doi.org/10.1145/2858036.2858169

32. Željko Obrenovic and Jean-Bernard Martens. 2011.
Sketching Interactive Systems with Sketchify. ACM
Trans. Comput.-Hum. Interact. 18, 1, Article 4 (May
2011), 38 pages. DOI:
http://dx.doi.org/10.1145/1959022.1959026

33. E. Sohn and Y. C. Choy. 2012. Sketch-n-Stretch:
Sketching Animations Using Cutouts. IEEE Computer
Graphics and Applications 32, 3 (May 2012), 59–69.
DOI:http://dx.doi.org/10.1109/MCG.2010.106

34. Jaime Teevan, Shamsi T. Iqbal, and Curtis von Veh. 2016.
Supporting Collaborative Writing with Microtasks. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 2657–2668. DOI:
http://dx.doi.org/10.1145/2858036.2858108

35. Bret Victor. 2012. Inventing on principle. (2012).

http://dx.doi.org/10.1145/2513383.2517033
http://dx.doi.org/10.2139/ssrn.2228728
http://dx.doi.org/10.1162/COMJ_a_00202
http://dx.doi.org/10.1145/332040.332486
http://dx.doi.org/10.1145/1866029.1866040
https://github.com/duopixel/Method-Draw
http://dx.doi.org/10.1145/1028014.1028086
http://dx.doi.org/10.1109/VLHCC.2008.4639081
http://dx.doi.org/10.1145/1125451.1125472
http://dx.doi.org/10.1145/330534.330545
http://dx.doi.org/10.1145/2858036.2858169
http://dx.doi.org/10.1145/1959022.1959026
http://dx.doi.org/10.1109/MCG.2010.106
http://dx.doi.org/10.1145/2858036.2858108
http:AndrewJ.Ko
http:Design.In

	Introduction
	Background and Related Work
	Designing Interactive Behaviors in Sketching Tools
	Crowdsourcing and Human Computation
	Programming by [Remixing] Demonstration
	Summary of Tools for Prototyping Interactive Behaviors

	The Complexity of Interactive Behaviors
	Limitations of Manual Demonstration
	Temporal Execution of Interactive Behaviors
	Simultaneous Transformation
	Animation as a re-usable object
	Advanced Visual Effects

	SKETCHEXPRESS
	Platform
	Recording Demonstration
	Recording and Replaying By Delta
	Remixing Animations
	Animation as a First Class Object

	Experiments
	User Study - UI Tasks
	Participants
	Experimental Design
	Performance Measures

	Result: A Sketch That Behaves
	Improving Quality
	Improving Long-Term Latency
	Task Engagement

	Conclusions and Future Work
	Acknowledgements
	References

