
iThem: Programming Internet of Things Beyond Trigger-Action
Pattern

Marx Wang
Computer Science
Virginia Tech
United States

boyuan@vt.edu

Daniel Manesh
Computer Science
Virginia Tech
United States

danielmanesh@vt.edu

Ruipu Hu
Information Studies

University of Maryland, College Park
United States

rhu12@umd.edu

Sang Won Lee
Computer Science
Virginia Tech
United States

sangwonlee@vt.edu

ABSTRACT
With emerging technologies bringing Internet of Things (IoT) de-
vices into domestic environments, trigger-action programming such
as IFTTT with its simple if-this-then-that pattern provides an effec-
tive way for end-users to connect fragmented intelligent services
and program their own smart home/work space automation. While
the simplicity of trigger-action programming can be effective for
non-programmers with its straightforward concepts and graphical
user interface, it does not allow the algorithmic expressivity that a
programming language has. For instance, the simple if-this-then-
that structure cannot cover complex algorithms that arise from real
world scenarios involving multiple conditions or keeping track of a
sequence of conditions (e.g., incrementing counters, triggering one
action if two conditions are both true). In this exploratory work, we
take an alternative approach by creating a programmable channel
between application programming interfaces (APIs), which allows
programmers to preserve states and to use them to write complex
algorithms. We propose iThem, which stands for intelligence of
them—internet of things, that allow programmers to author any
complex algorithms that can connect different IoT services and fully
unleash the freedom of a general programming language. In this
poster, we share the design, development, and ongoing validation
progress of iThem, which piggybacks on existing programmable
IoT system IFTTT, and which allows for a programmable channel
that connects triggers and actions in IFTTT with versatility.

CCS CONCEPTS
• Human-centered computing → User interface programming; •
Software and its engineering → Application specific devel-
opment environments.

KEYWORDS
Trigger-action programming; end-user programming; Software
Tools; IoT; Internet of Things; IFTTT, Do-It-Yourself; User Experi-
ence

1 INTRODUCTION
In recent years, the increasing prevalence of smart devices [10]
and social media [21] has produced an overwhelming number of

independent smart and connected products and services for indi-
viduals and households to manage. Trigger-action programming is
a popular end-user technology that allows users to specify simple
IF-THEN rules for controlling the Internet of Things and various
services [1, 7]. For example, a trigger-action program involving a
weather service and a smart light bulb might be: IF it starts to rain
(the trigger), THEN change the color of my light bulb to blue (the
action). Trigger-action programming services, such as IFTTT [17]
(which stands for if-this-than-that) or Zappier[25], provide an effec-
tive way for end-users to connect fragmented services and imple-
ment their own smart home/work space automation [8, 9, 15, 22, 23].

However, many real world workflows are too complicated to
be represented as simple IF-THEN algorithms. For example, the
previous example of changing the light bulb color to blue when
it rains does not have to run when a user is not at home. Rather,
it should send a text message to the user if they are not at home.
Or the algorithm should not run when the user is asleep for not
distracting their sleep with blue lights. The oversimplified IF-THEN
model limits users from customizing their algorithms, making it dif-
ficult to deal with growing complexities in their desired automated
scenarios [15, 20, 22, 23].

Researchers have pointed out this limitation in programmable
IoT. Through a series of contextual inquiries with families on home
automation needs, Brich et al. have shown simple trigger-action
rules are not sufficient to fulfill the needs of complex real life sce-
narios [2]. Researchers have looked into augmenting trigger-action
programming by allowing users to combine multiple triggers and
actions [15], providing additional conditional operators and con-
straints [9, 20] crowdsourcing algorithm authoring [16], visualizing
and expanding debugging process [1, 3, 11, 26], and recommend-
ing programming recipes [4–6]. However, there remains limitation
in taking advantage of the full expressivity that a programming
language can afford with trigger-action-based IoT programming.

In this work, we take an alternative approach which augments
the existing programmable IoT service IFTTTwith a general-purpose
programming language. We propose iThem—a trigger-action pro-
gramming interface that can connect IFTTT triggers and actions
with any user-programmed algorithm in between. iThem enables
persistent state with simple database storage and retrieval, and it
allows users to express complex logic in JavaScript to determine



Wang et al.

Figure 1: A applet in IFTTT where the user’s desk Philips
Hue light bulb will blink every time there is a new Youtube
subscriber.

which actions should result from a trigger. In this poster, we will
share the design pattern of the proposed system, features that en-
able connections between IFTTT features and any user-authored
javascript code. The proposed design pattern offers a novel piggy-
back prototype that can abstract APIs connection by leveraging an
existing IoT programming service and still allowing programmabil-
ity for further personalized, automated workflows between smart
devices and social media. Lastly, we will share our ongoing efforts
of user study plan for validation.

2 DESIGN AND IMPLEMENTATION
In this section, we introduce the design and features of iThem.
Before we introduce iThem, we briefly introduce IFTTT concepts
which are required to understand iThem’s functionality. There are
four different components in IFTTT: service, trigger, action, and
applet.

• A service is a building block of IFTTT that abstracts an
API of a smart device (e.g., smart thermostat, smart light
bulb), social media (e.g., Twitter, Instagram), or information
service (e.g., Weather). A service has a set of triggers and
actions that it supports.

• A trigger is an event that is detected by a service, which is
used to call an action on IFTTT. (e.g., Elon Musk tweeted)

• An action is the behavior of a service that IFTTT initiates
when a trigger fires. (e.g., Text me the price of a crypto-
currency that I follow.)

• An applet is a specification of trigger-action relationship
and represents one application in IFTTT.

Suppose a YouTube creator wants to make their Phillips Hue
light bulb blink whenever there is a new subscriber. The user can
create an applet that connects two services: YouTube for a trigger
(a new subscriber) and Phillips Hue for an action (blink an light
bulb). This applet is depicted in Figure 1.

2.1 Piggybacking on IFTTT
We take advantage of IFTTT and use its existing functions of
triggers and actions that abstract communications via APIs with

Figure 2: iThem is an extension of IFTTT that consists of trig-
gers, actions, and an integrated development environment.
Users can connect triggers of any service to an iThem action,
which is named an inlet as it takes incoming signals and
can write, run, and test code in inlets (left side). An outlet
is iThem’s trigger in IFTTT that can be connected to other
IFTTT actions. Users can call one or more outlets in the inlet
via a pre-defined function callOutlet(righr side).

abundant number of services. This approach of developing a pro-
grammable service that can connect existing components of IFTTT
is inspired from piggyback prototyping [12], which allows us to tap
into an already-established, mature system.

iThem is an extension of IFTTT that consists of triggers, actions,
and an integrated development environment (IDE, See Figure 2,
available at https://ithem.cs.vt.edu) for programming, running, and
testing. iThem serves as a programmable middle layer where user
can write JavaScript code that can run by any IFTTT triggers and
subsequently call any IFTTT actions. We explain three critical
components of iThem: inlets, outlets, and state.

2.1.1 Inlets. To create a complex algorithm that if-this-then-that
pattern cannot cover, users can split one applet into multiple applets
which typically has iThem in the middle. Users can connect triggers
of any service to an iThem action, which is named an inlet as it
takes incoming signals. An inlet— iThem’s IFTTT action— is always
associated with one javascript file. Users can write, run, and test
code in inlets, shown on the left side of interface in figure 2

2.1.2 Outlets. An outlet is iThem’s trigger in IFTTT that can be
connected to other IFTTT actions, shown on the right side of inter-
face in figure 2 Users can call one or more outlets in the inlet via a
pre-defined function callOutlet(). Then a user needs to create an
applet in IFTTT, using a iThem trigger with a specific outlet handle
and connect the trigger to a different action. Invoking outlets from
inlets allow users to connect different applets.

2.1.3 States. A state is a backend variable to preserve a state of
an algorithm across inlet calls. To unlock the full ability of pro-
gramming, iThem provides the ability for users to store simple

https://ithem.cs.vt.edu


iThem: Programming Internet of Things Beyond Trigger-Action Pattern

Figure 3: A use case of iThem and IFTTT for John and his cat Youtube Channel: With iThem, John was able to create a
complex automation where his desk light only blinks when the number of new subscribers reaches a multiple of 100 and his
Amazon Echo proudly announces the new subscriber count if the new subscribers number is at the multiple of 1000. John
used one incoming applet to call inlet ’subIncrease’ if there’s a new subscriber, and two applets that will be called through
’PlayCelebration’ and ’BlinkLightBulb’ outlets to perform light-bulb blinking and Amazon Echo announcement action. John
stored the number of subscribers in a state variable ’numSubscriber’ and wrote his algorithm in ’subIncrease.js’

or complex data, preserving any state they may have. Users can
create a variable from the interface and can programmatically read
and write data into variables via pre-defined loadState() and
saveState().

2.2 Implementation
iThem platform is implemented with NextJS and React as frame-
works and MongoDB as a flexible database. The communication
between iThem and IFTTT is implemented based on IFTTT API
documentation. The code-running environment in inlets utilizes
‘vm2’1, a Node sandbox module that allows users to run untrusted
code securely in a single process. IFTTT services and iThem allow
passing a simple string data field from trigger to action and inlets
allow users to read this user-customizable data.

2.3 Example iThem scenario
John is a software developer and he created a youtube channel to
showcase his cute cat. Initially, John’s cat’s channel only gained
a few followers per week. John felt very proud nonetheless and
wanted to make an automation that can make his desk Philips Hue
light bulb blink every time there is a new subscriber. He created an
applet in IFTTT to do precisely that, as depicted in Figure 1.

As John uploaded more and more funny and cute videos of his
cat, his cat channel started to gain popularity. Now his desk light
would blink a couple times every hour, sometimes even several
times per minute. His IFTTT applet was now an annoyance. He

1https://github.com/patriksimek/vm2

wanted to set a condition that the desk light only blinks when the
number of new subscribers reaches a multiple of 100. However, he
cannot do that with IFTTT because they do not have such a trigger
and he cannot keep track of subscriber numbers.

With iThem, however, he was able to create his ideal automation.
He created a variable ’numSubscriber’ in iThem to store the total
number of subscribers. In IFTTT, he created an applet with the same
IF condition (i.e. IF a new account subscribed to my cat channel) but
with a different THEN action (i.e. THEN call my program in iThem).
He also created an outlet called "BlinkLightBulb" connecting to an
applet in IFTTT with a action ’blink lightbulb’. In addition to make
the desk light blink, he also want to have his Amazon Echo proudly
announce the new subscriber count if the new subscribers number
is at the multiple of 1000, so he created another outlet in iThem,
along with the corresponding applet in IFTTT. Figure 3 shows the
overall structures of IFTTT and iThem of this automation and the
code.

3 ONGOING EFFORTS AND FUTUREWORK
We plan to validate our system with a two-part user study. In the
first part of the study, we will introduce iThem to participants
and then ask them to solve a series of problems using the system.
This part of the study is mainly to evaluate and collect feedback
on the user interface. We will evaluate iThem based on how well
participants were able to complete the tasks or not, as well as
through a usability survey and exit interview.

For the second part of the study, the same participants will be
given a week to come up with their own algorithms to implement

https://github.com/patriksimek/vm2


Wang et al.

using iThem. At the end of the week, we will have a short interview
to probe for any shortcomings with iThem’s computational model
and also to gauge participants’ attitudes about using a system like
iThem in the future.

While our planned study is aimed at validating our system
with participants who have coding experience, iThem could also
provide a valuable space for non-programmers to learn compu-
tational thinking skills. One future direction is to explore how
we can leverage iThem to nudge general users to learn program-
ming through the Do-It-Yourself style smart home configuration
projects [24]. Constructionism-based learning, or project-based
learning[13], is a popular and widely adopted pedagogical strategy
in computer science education [18] and research has shown that
projects with a combination of physical devices and programming
can result in greater engagement and understanding in program-
ming concepts[14, 19]. Through developing their own work/home
automation services, iThem will give end-users novel motivations
to learn to program with something that are relatable to their lives
and be better adapt in the ever-changing technology world.

REFERENCES
[1] Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee, Weijia He,

GuanWang, Michael L. Littman, and Blase Ur. 2019. How Users Interpret Bugs in
Trigger-Action Programming. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–12. DOI:http://dx.doi.org/10.1145/3290605.3300782

[2] Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and Florian Schaub.
2017. Exploring End User Programming Needs in Home Automation. ACM
Trans. Comput.-Hum. Interact. 24, 2, Article 11 (apr 2017), 35 pages. DOI:http:
//dx.doi.org/10.1145/3057858

[3] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019a. Empowering
End Users in Debugging Trigger-Action Rules. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (CHI ’19). Association for
Computing Machinery, New York, NY, USA, 1–13. DOI:http://dx.doi.org/10.
1145/3290605.3300618

[4] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019b. EUDopti-
mizer: Assisting End Users in Composing IF-THEN Rules Through Optimization.
IEEE Access 7 (2019), 37950–37960. DOI:http://dx.doi.org/10.1109/ACCESS.2019.
2905619

[5] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019c. RecRules:
Recommending IF-THEN Rules for End-User Development. ACM Trans. Intell.
Syst. Technol. 10, 5, Article 58 (sep 2019), 27 pages. DOI:http://dx.doi.org/10.1145/
3344211

[6] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2020. TAPrec:
Supporting the Composition of Trigger-Action Rules through Dynamic Recom-
mendations. In Proceedings of the 25th International Conference on Intelligent User
Interfaces (IUI ’20). Association for Computing Machinery, New York, NY, USA,
579–588. DOI:http://dx.doi.org/10.1145/3377325.3377499

[7] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2022. How do
end-users program the Internet of Things? Behaviour & Information Technology
0, 0 (2022), 1–23. DOI:http://dx.doi.org/10.1080/0144929X.2022.2071169

[8] Luigi De Russis and Fulvio Corno. 2015. HomeRules: A Tangible End-User
Programming Interface for Smart Homes. In Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Systems (CHI
EA ’15). Association for Computing Machinery, New York, NY, USA, 2109–2114.
DOI:http://dx.doi.org/10.1145/2702613.2732795

[9] Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. 2017. Empowering
end users to customize their smart environments: model, composition paradigms,
and domain-specific tools. ACM Transactions on Computer-Human Interaction
(TOCHI) 24, 2 (2017), 1–52.

[10] Colin Dixon, Ratul Mahajan, Sharad Agarwal, A.J. Brush, Bongshin Lee, Stefan
Saroiu, and Paramvir Bahl. 2012. An Operating System for the Home. In 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12).
USENIXAssociation, San Jose, CA, 337–352. https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/dixon

[11] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. 2017. Per-
sonalization of Context-Dependent Applications Through Trigger-Action Rules.
ACM Trans. Comput.-Hum. Interact. 24, 2, Article 14 (apr 2017), 33 pages. DOI:
http://dx.doi.org/10.1145/3057861

[12] Catherine Grevet and Eric Gilbert. 2015. Piggyback Prototyping: Using Existing,

Large-Scale Social Computing Systems to Prototype New Ones. In Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems
(CHI ’15). Association for Computing Machinery, New York, NY, USA, 4047–4056.
DOI:http://dx.doi.org/10.1145/2702123.2702395

[13] H.M. Havenga. 2015. Project-based learning in higher education : exploring
programming students’ development towards self-directedness. South African
Journal of Higher Education 29, 4 (2015), 135–157. DOI:http://dx.doi.org/10.10520/
EJC182452

[14] Ting-Chia Hsu, Shao-Chen Chang, and Yu-Ting Hung. 2018. How to learn and
how to teach computational thinking: Suggestions based on a review of the
literature. Computers & Education 126 (2018), 296–310. DOI:http://dx.doi.org/
https://doi.org/10.1016/j.compedu.2018.07.004

[15] Justin Huang and Maya Cakmak. 2015. Supporting Mental Model Accuracy in
Trigger-Action Programming. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp ’15). Association
for Computing Machinery, New York, NY, USA, 215–225. DOI:http://dx.doi.org/
10.1145/2750858.2805830

[16] Ting-Hao K. Huang, Amos Azaria, Oscar J. Romero, and Jeffrey P. Bigham. 2019.
InstructableCrowd: Creating IF-THEN Rules for Smartphones via Conversations
with the Crowd. Human Computation 6, 1 (Sep. 2019), 113–146. DOI:http:
//dx.doi.org/10.15346/hc.v6i1.7

[17] IFTTT. 2022. WTF IS IFTTT? (2022). https://ifttt.com/explore/new_to_ifttt
[18] Dimitra Kokotsaki, Victoria Menzies, and Andy Wiggins. 2016. Project-based

learning: A review of the literature. Improving Schools 19, 3 (2016), 267–277. DOI:
http://dx.doi.org/10.1177/1365480216659733

[19] Utku Köse. 2010. A web based system for project-based learning activities in
“web design and programming” course. Procedia - Social and Behavioral Sciences
2, 2 (2010), 1174–1184. DOI:http://dx.doi.org/https://doi.org/10.1016/j.sbspro.
2010.03.168 Innovation and Creativity in Education.

[20] Sarah Mennicken, Jo Vermeulen, and Elaine M. Huang. 2014. From Today’s
Augmented Houses to Tomorrow’s Smart Homes: New Directions for Home
Automation Research. In Proceedings of the 2014 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing (UbiComp ’14). Association for
Computing Machinery, New York, NY, USA, 105–115. DOI:http://dx.doi.org/10.
1145/2632048.2636076

[21] Manya Sleeper, William Melicher, Hana Habib, Lujo Bauer, Lorrie Faith Cranor,
and Michelle L Mazurek. 2016. Sharing personal content online: Exploring
channel choice and multi-channel behaviors. In Proceedings of the 2016 CHI
conference on human factors in computing systems. 101–112.

[22] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. 2014.
Practical Trigger-Action Programming in the Smart Home. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’14). Association
for Computing Machinery, New York, NY, USA, 803–812. DOI:http://dx.doi.org/
10.1145/2556288.2557420

[23] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L. Littman. 2016. Trigger-Action
Programming in the Wild: An Analysis of 200,000 IFTTT Recipes. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16).
Association for Computing Machinery, New York, NY, USA, 3227–3231. DOI:
http://dx.doi.org/10.1145/2858036.2858556

[24] Jong-bum Woo and Youn-kyung Lim. 2015. User Experience in Do-It-Yourself-
Style Smart Homes. In Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing (UbiComp ’15). Association for Comput-
ing Machinery, New York, NY, USA, 779–790. DOI:http://dx.doi.org/10.1145/
2750858.2806063

[25] Zapier. 2022. Learn key concepts in Zapier. (Feb 2022). https://zapier.com/help/
create/basics/learn-key-concepts-in-zapier

[26] Valerie Zhao, Lefan Zhang, Bo Wang, Shan Lu, and Blase Ur. 2020. Visualizing
Differences to Improve End-User Understanding of Trigger-Action Programs. In
Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems (CHI EA ’20). Association for Computing Machinery, New York, NY,
USA, 1–10. DOI:http://dx.doi.org/10.1145/3334480.3382940

http://dx.doi.org/10.1145/3290605.3300782
http://dx.doi.org/10.1145/3057858
http://dx.doi.org/10.1145/3057858
http://dx.doi.org/10.1145/3290605.3300618
http://dx.doi.org/10.1145/3290605.3300618
http://dx.doi.org/10.1109/ACCESS.2019.2905619
http://dx.doi.org/10.1109/ACCESS.2019.2905619
http://dx.doi.org/10.1145/3344211
http://dx.doi.org/10.1145/3344211
http://dx.doi.org/10.1145/3377325.3377499
http://dx.doi.org/10.1080/0144929X.2022.2071169
http://dx.doi.org/10.1145/2702613.2732795
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dixon
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/dixon
http://dx.doi.org/10.1145/3057861
http://dx.doi.org/10.1145/2702123.2702395
http://dx.doi.org/10.10520/EJC182452
http://dx.doi.org/10.10520/EJC182452
http://dx.doi.org/https://doi.org/10.1016/j.compedu.2018.07.004
http://dx.doi.org/https://doi.org/10.1016/j.compedu.2018.07.004
http://dx.doi.org/10.1145/2750858.2805830
http://dx.doi.org/10.1145/2750858.2805830
http://dx.doi.org/10.15346/hc.v6i1.7
http://dx.doi.org/10.15346/hc.v6i1.7
https://ifttt.com/explore/new_to_ifttt
http://dx.doi.org/10.1177/1365480216659733
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2010.03.168
http://dx.doi.org/https://doi.org/10.1016/j.sbspro.2010.03.168
http://dx.doi.org/10.1145/2632048.2636076
http://dx.doi.org/10.1145/2632048.2636076
http://dx.doi.org/10.1145/2556288.2557420
http://dx.doi.org/10.1145/2556288.2557420
http://dx.doi.org/10.1145/2858036.2858556
http://dx.doi.org/10.1145/2750858.2806063
http://dx.doi.org/10.1145/2750858.2806063
https://zapier.com/help/create/basics/learn-key-concepts-in-zapier
https://zapier.com/help/create/basics/learn-key-concepts-in-zapier
http://dx.doi.org/10.1145/3334480.3382940

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 Piggybacking on IFTTT
	2.2 Implementation
	2.3 Example iThem scenario

	3 Ongoing efforts and future work
	References

